Форум Королевства Ситерра

Здравствуйте, добрый путник ( Вход | Прописка )

Просьба сообщать о найденных ошибках и оставлять свои пожелания в нашей Контактной форме

 
Ответить в данную темуНачать новую тему
> 

Ядерные Испытания И Создание Ядерного Оружия

Bartolomew m...
сообщение 10.7.2009, 23:55
Сообщение #1


Иконка группы
ВСУ
Звание: Полковник
Сообщений: 916
Пиастры: 1056632
Инвентарь
Регистрация: 9.9.2007
Страна:
Боевой опыт:   0  


Введение. Общие характеристики ядерных испытаний СССР

Ядерное оружие является военно-техническим гарантом обеспечения национальной безопасности, ключевым фактором, определяющим особый военно-политический статус России как великой державы в современном мире.

Ядерное оружие гарантирует получение противником неприемлемого ущерба в любых масштабных военных конфликтах, оно способно обесценить качество всех современных систем оружия, его потенциал исключал и способен исключить практическую возможность внешней агрессии в отношении России, откуда бы она ни исходила.


Сохранение ядерных гарантий национальной безопасности в новом мире будет иметь для России первостепенное значение. Это значение определяется:
существенно меньшими военно-техническими возможностями в области обычных систем оружия и людскими ресурсами России по сравнению с рядом других государств;
нестабильной ситуацией на границах России и государств ближнего зарубежья;
непредсказуемой политикой в отношении России на протяжении предстоящих ближайших десятилетий государств Запада и некоторых других стран (примером может служить расширение НАТО и возможность продвижения его ядерных комплексов к границам России);
возможностью общего кризиса цивилизации, связанного с перенаселением, истощением ключевых природных ресурсов и ухудшением среды обитания, и попыток передела мира.

Ядерный статус особенно важен для России в переходный период, пока не будет преодолён экономический кризис, не произойдёт политическая консолидация общества, и Россия не сможет использовать в мировой политике мощные экономические рычаги.

Российская Федерация отказалась от порочной политики СССР: антагонистического противостояния с США и другими странами Западного блока. Ядерное оружие России не направлено против какого-либо государства или группы государств современного мира, однако в случае возникновения реальных военных угроз оно способно выполнить свои функции гаранта безопасности по отношению к любому противнику.

Мы полагаем, что в общих чертах такая ядерная политика характерна на данном этапе для всех ядерных государств, хотя существенные различия в геополитическом положении, экономической ситуации и военно-технических возможностях могут привести в перспективе к различным подходам в отношении будущего ядерного оружия в разных странах.
Некоторые используемые термины

Приведём сначала смысловые значения используемой в данной главе терминологии, относящейся к ядерным испытаниям.

Ядерное испытание — это целенаправленный эксперимент по исследованию параметров ядерного заряда (устройства), как правило, сопровождающийся взрывным выделением ядерной энергии (энергии деления и синтеза ядер).

Для производства ядерного взрыва используется обжатие делящихся материалов энергией взрыва химических взрывчатых веществ (ВВ) (заряды на принципе имплозии); в ряде случаев ядерный взрыв обеспечивается объединением отдельных подкритических блоков с делящимися веществами (заряды на сближении).

Взрывные эксперименты с ядерными зарядами, в которых не выделяется ядерная энергия, относятся к категории гидродинамических испытаний, и они не относятся к ядерным испытаниям, за исключением тех случаев, когда такой результат имел место в специально запланированном ядерном испытании.

Взрывные эксперименты с ядерными зарядами, в которых количество выделенной ядерной энергии сравнимо с энергией химических ВВ заряда, относятся к категории гидроядерных испытаний и они также не относятся к ядерным испытаниям, за исключением тех случаев, когда такой результат имел место в специально запланированном ядерном испытании.

Под двухстадийным ядерным зарядом (устройством) понимается заряд, состоящий из первичного модуля (ядерный заряд), ядерный взрыв которого обеспечивает обжатие и ядерный (термоядерный) взрыв вторичного модуля.

Ядерные испытания нескольких зарядов, находящихся в пространственном объёме с диаметром не более 2 километров, разделённые во времени интервалом не более 0,1 секунды, считаются одним ядерным испытанием.
Этапы проведения ядерных испытаний

В период 1949–1990 гг. СССР провёл 715 ядерных испытаний и ядерных взрывов в мирных целях. Внутри этого периода можно выделить ряд этапов:

I этап — с 29.08.49 г. по 03.11.58 г., был начат испытанием первой атомной бомбы СССР и закончен в связи с объявлением СССР (совместно с США) первого моратория на ядерные испытания;

II этап — с 01.09.61 г. по 25.12.62 г., начался в связи с выходом СССР из первого моратория (вследствие обострения военно-политической ситуации, толчком к которой послужил инцидент с полетом самолёта У–2 над территорией СССР в мае 1961 года) и закончился в связи с прекращением СССР атмосферных ядерных взрывов;

III этап — с 15.03.64 г. по 25.12.75 г., был начат реализацией программы ядерных испытаний СССР в условиях действия Договора о запрещении ядерных испытаний в трёх средах (СССР, США, Великобритания) и закончен в связи с прекращением СССР ядерных взрывов с энерговыделением выше порогового значения Е = 150 кт в соответствии с вступлением в действие Договора 1974 г. о пороговом ограничении мощности ядерных испытаний;

IV этап — с 15.01.76 г. по 25.07.85 г., был начат реализацией программы ядерных испытаний СССР в условиях действия Договора о пороговом ограничении мощности ядерных испытаний и закончен в связи с односторонним объявлением СССР моратория на ядерные испытания;

V этап — с 26.02.87 г. по 24.10.90 г. (с перерывом между 19.10.89 г. и 24.10.90 г.), представляет собой работу в условиях курса М.С. Горбачёва на прекращение ядерных испытаний СССР.

Этапы I и II могут быть объединены в один этап, условно называемый периодом „атмосферных ядерных испытаний“, а этапы III, IV и V — во второй этап — период „подземных ядерных испытаний“.

В табл. 1.1 приведено распределение общего количества и полной мощности ядерных испытаний СССР по рассматриваемым этапам.
Таблица 1.1 Распределение количества и мощности ядерных испытаний СССР по этапамЭтап

Код
    I    II    III    IV    V
N0    83    138    214    233    47
Е0 (Мт)    27    220,2    27,3    8,4    2,5



Общее энерговыделение ядерных испытаний СССР составило Е0 = 285,4 Мт, в том числе в период „атмосферных ядерных испытаний“ Е0 = 247,2 Мт и в период „подземных ядерных испытаний“ Е0 = 38,2 Мт.

Представляет интерес сравнить эти характеристики с аналогичными характеристиками программы ядерных испытаний США. В период 1945–1992 гг. США провели 1056 ядерных испытаний и ядерных взрывов в мирных целях (в том числе 24 испытания в Неваде совместно с Великобританией), которые также можно разделить на ряд этапов:

I этап — с 16.07.45 г. по 14.05.48 г., был начат испытанием первой атомной бомбы США (Trinity) и закончен по внутренним причинам;

II этап — с 27.01.51 г. по 30.10.58 г., начался первым испытанием на Невадском полигоне и закончился вступлением США в совместный мораторий с СССР 1958 года;

III этап — с 15.09.61 г. по 25.06.63 г., начался в связи с выходом США из моратория вследствие обострения военно-политической ситуации и закончился вступлением в период, определяемый действием Договора о запрещении ядерных испытаний в трёх средах;

IV этап — с 12.08.63 г. по 26.08.76 г., начался в условиях действия Договора о запрещении ядерных испытаний в трёх средах, а закончился в связи с началом действия Договора о пороговом ограничении ядерных испытаний;

V этап — с 06.10.76 г. по 23.09.92 г., начался в условиях действия Договора о пороговом ограничении ядерных испытаний и закончился вступлением США в мораторий на ядерные испытания.

Этапы I, II и III могут быть объединены в один этап, называемый этапом „атмосферных ядерных испытаний“ (хотя значительная часть ядерных испытаний США в это время была проведена под землёй), а этапы IV и V могут быть объединены в этап „подземных ядерных испытаний“.

В табл. 1.2 приведено распределение количества и полной мощности ядерных испытаний США по данным этапам. При оценке этих характеристик мы использовали официальные и обзорные материалы США.
Таблица 1.2 Распределение количества и мощности ядерных испытаний США по этапамЭтап

Код
            I    II    III    IV    V
N0    8    188    137    469    254
Е0 (Мт)    0,2    116,9    37,56    32,15    6,2



Общее энерговыделение ядерных испытаний США составило Е0 = 193 Мт, в том числе в период „атмосферных ядерных испытаний“ Е0 = 154,65 Мт и в период „подземных ядерных испытаний“ Е0 = 38,35 Мт.

Из сравнения общих характеристик ядерных испытаний СССР и США видно следующее:

СССР провёл в 1,47 раза меньше ядерных испытаний, чем США, а полное энерговыделение ядерных испытаний СССР в 1,47 раза больше, чем полное энерговыделение ядерных испытаний США;
в период атмосферных ядерных испытаний СССР провёл в 1,5 раза меньше ядерных испытаний, чем США, а полная мощность ядерных испытаний СССР в 1,6 раза больше полной мощности ядерных испытаний США за этот период;
в период подземных ядерных испытаний СССР провёл в 1,46 раза меньше ядерных испытаний, чем США, при примерно одинаковом полном энерговыделении ядерных испытаний у обеих стран.

Максимальная интенсивность ядерных испытаний СССР в „атмосферный период ядерных испытаний“ приходится на 1962 год (79 испытаний); максимальная интенсивность ядерных испытаний США в этот период также приходится на 1962 год (98 испытаний). Максимальное годовое энерговыделение ядерных испытаний СССР приходится на 1962 год (133,8 Мт), а у США — на 1954 год (48,2 Мт).

Цитата
В период 1963–1976 гг. максимальная интенсивность ядерных испытаний СССР составляла 24 испытания (1972 г.), у США — 56 испытаний (1968 г.). Максимальное годовое энерговыделение ядерных испытаний СССР составляло в этот период 8,17 Мт (1973 г.), у США — 4,85 Мт (1968, 1971 гг.).

В период 1977–1992 гг. максимальная интенсивность ядерных испытаний СССР составляла 31 испытание (1978, 1979 гг.), у США — 21 испытание (1978 г.). Максимальное годовое энерговыделение ядерных испытаний СССР составляло в этот период 1,41 Мт (1979 г.), у США — 0,57 Мт (1978, 1982 гг.).

Из перечисленных характеристик динамики проведения ядерных испытаний можно сделать ряд выводов:

в каждый новый этап ядерных испытаний (1949, 1963 гг.) СССР вступал с запаздыванием развития технологии проведения испытаний по сравнению с США;
в 1962 году отставание СССР от США в возможностях проведения атмосферных взрывов было ликвидировано; при близком полном количестве испытаний (79 испытаний СССР, 98 испытаний США) полное энерговыделение ядерных взрывов СССР превышало полное энерговыделение ядерных взрывов США за этот год в 3,6 раза;
в 1964–1965 гг. количество ядерных испытаний СССР было в 3,7 раза меньше количества ядерных испытаний, проведённых в эти годы США, а полное энерговыделение ядерных взрывов СССР уступало полному энерговыделению ядерных взрывов США в 4,7 раза. В 1971–1975 гг. среднее годовое количество ядерных испытаний, проводившихся СССР и США, было уже близким (20,8 и 23,8 испытания), а полное энерговыделение ядерных испытаний СССР в 1,85 раза превышало полное энерговыделение ядерных испытаний США;
в период 1977–1984 гг. (до политики М.С. Горбачёва в отношении мораториев) среднее годовое количество ядерных испытаний СССР составляло 25,4 испытаний в год по сравнению с 18,6 испытаний в год США (т. е. превышало в 1,35 раза); среднее годовое энерговыделение ядерных испытаний СССР составляло в этот период 0,92 Мт/год по сравнению с 0,46 Мт/год США (т. е. превышало в 2 раза).


Таким образом, мы можем говорить о ликвидации отставания и реализации определённых преимуществ в проведении ядерных испытаний СССР по сравнению с США в 1962 году, в 1971–1975 гг., в 1977–1984 гг. Развитию этого успеха помешал в 1963 г. Договор о запрещении ядерных испытаний в трёх средах, после 1975 года — Договор о пороговом ограничении мощности ядерных испытаний, после 1984 года — политика М.С. Горбачёва.

При сравнении программ ядерных испытаний СССР и США представляет интерес выделение ядерных испытаний в гражданских целях.

Программа США ядерных взрывов в мирных целях (программа Plowshare) проводилась в 1961–1973 гг. и насчитывала 27 экспериментов. В СССР было проведено в течение 1964–1988 гг. в общей сложности 124 промышленных взрыва и 32 ядерных испытания в интересах отработки промышленных зарядов.
Совершенствование ядерного оружия и ядерные испытания СССР

Ядерные испытания являются составным элементом технологии создания ядерного оружия, в которую входит:

Код
проектирование ядерных зарядов (ЯЗ);
разработка и производство опытного образца ЯЗ;
лабораторная отработка ЯЗ;
ядерные испытания опытного образца ЯЗ;
доработка опытного образца с повторным испытанием (в ряде случаев);
создание и производство серийного образца ЯЗ;
ядерные испытания серийного образца ЯЗ (в ряде случаев);
натурные испытания на подтверждение ядерной безопасности боеприпаса (в ряде случаев).


Кроме того, проведение ядерных испытаний для отдельных образцов ЯЗ связано:

Код
с исследованиями их живучести в условиях, моделирующих возможные ситуации воздействия поражающих факторов (ПФ) систем противодействия;
с исследованиями ПФ, специфических для данного типа ЯЗ;
с подтверждением надёжности боезапаса;
с модернизацией ранее разработанных ЯЗ, связанной с внесением существенных изменений в конструкцию заряда.



Ниже рассмотрены некоторые конкретные задачи развития ядерного оружия и их связь с ядерными испытаниями. Специфика проблемы не позволяет дать её полный анализ в открытом изложении, поэтому затронуты только отдельные вопросы, изложение их ограничено, конкретные примеры относятся в основном к периоду атмосферных испытаний.
Ядерные испытания и разработка ядерных зарядов

На первых этапах ядерных программ США и СССР работы в практическом плане были направлены на улучшение массогабаритных характеристик этих зарядов, более эффективное использование делящихся материалов, повышение стабильности параметров ЯЗ в различных ситуациях. Эти работы были связаны с проведением значительного количества ядерных испытаний, в которых апробировались конкретные технические решения перечисленных вопросов.

Известно, что в этих целях, например:

Код
совершенствовалась система передачи энергии взрыва химических ВВ массе делящихся материалов;
исследовались способы повышения КПД сгорания плутония;
повышались энергетические характеристики используемых взрывчатых составов;
развивалась система подрыва взрывчатки;
совершенствовались источники нейтронного инициирования цепной реакции ЯЗ;
улучшалось качество делящихся материалов и материалов нейтронных отражателей.


Конечно, для того времени проведение данных экспериментов было целесообразно и оправдано. Вместе с тем не вызывает сомнений и то, что в данное время системы проектирования многих подобных ЯЗ достаточны для разработки аналогов таких зарядов без ядерных испытаний.

Ядерные испытания, проводившиеся в рассматриваемых целях, предоставляли конкретную информацию в отношении энерговыделения ядерного взрыва, параметров нейтронного и гамма-излучений, сопровождающих деление ядер, и тем самым позволяли тестировать и развивать наряду с лабораторными экспериментами систему проектирования ЯЗ.
Ядерное оружие, плутоний и ядерные испытания

Одной из общих черт развития ядерного оружия СССР и США является то, что оба государства создали свои системы ядерных вооружений на основе плутония как определяющего делящегося материала первичных модулей и автономных ЯЗ. Использование плутония позволило, благодаря его высоким нейтронно-размножающим свойствам, достигнуть существенного продвижения в таких параметрах, как габаритно-массовые параметры ЯЗ, отношение „энерговыделение/масса“, и адаптировать ядерное оружие для целей различных видов вооружённых сил. Вместе с тем этот подход обусловил проблему аварийной радиационной взрывобезопасности ЯЗ, связанную с опасностью загрязнения окружающей среды активностью плутония при авариях с ЯЗ, и привёл к значительному развитию радиационно-опасных технологий, связанных с производством, выделением и обработкой плутония. При этом необходимо иметь в виду, что в том случае, если бы не удалось получить такой материал, как плутоний, системы ядерного оружия США и СССР, конечно, были бы созданы, хотя история их развития и характеристики были бы, несомненно, другими.

В подавляющем большинстве ядерных испытаний определялись параметры, характеризующие эффективность сжатия плутония, входящего в состав ЯЗ, а также влияние на неё различных изменений, вносимых в схему отдельных конкретных зарядов. Эти исследования, а также гидродинамические лабораторные эксперименты, гидроядерные эксперименты и нейтронно-физические эксперименты с критическими сборками позволили создать достаточно информативную картину поведения блоков с плутонием в различных условиях его взрывного нагружения, характерных для ядерных зарядов.
Создание термоядерного оружия и ядерные испытания


Фундаментальный шаг в развитии ядерных вооружений был сделан при переходе к созданию двухстадийных ядерных зарядов, в которых второй модуль работает в условиях имплозии, определяемой взрывом первичного модуля. Прорыв в этом направлении был реализован в США в эксперименте Mike (31.10.52 г.) и в серии испытаний операции Castle (1954 г.), а в СССР в эксперименте 22 ноября 1955 года с ЯЗ РДС–37. Этот шаг привёл к существенному повышению абсолютного и удельного энерговыделения ядерного оружия и резкому увеличению мегатоннажа ядерных арсеналов.

Так, например, мегатоннаж ядерного арсенала США возрос в 1957 году по сравнению с 1953 годом в 240 раз (с 73 до 17500 Мт). Именно на этой стадии развития ядерных арсеналов возникла проблема глобальной экологической катастрофы в случае широкомасштабного ядерного конфликта.

Следует отметить существенные различия в характеристиках первых двухстадийных ядерных устройств, созданных в СССР и в США.

Необходимо отметить также достаточно приближённый уровень предсказания энерговыделения первых термоядерных взрывов.

Практическое развитие разработка РДС–37 получила в экспериментах 30 августа и 17 ноября 1956 г., в которых было реализовано энерговыделение Е = 0,9 Мт, и далее в ядерном испытании 6 октября 1957 г., в котором было реализовано энерговыделение Е = 2,9 Мт.

Проведённые испытания хорошо иллюстрируют также достаточную приближённость развитой к тому времени системы проектирования ЯЗ в отношении процессов, характеризующих работу двухстадийных термоядерных зарядов. Роль ядерных испытаний (помимо собственно аттестации параметров новых разработок) состояла в накоплении информации, необходимой для совершенствования физико-математических моделей, определении ключевых элементов и создании адекватной системы проектирования подобных ЯЗ.

Типичным видом работ по совершенствованию ядерных зарядов были разработки, связанные с повышением параметров удельного энерговыделения ЯЗ. В ядерных испытаниях 27 февраля и 12 октября 1958 г. был проверен ядерный заряд, который являлся непосредственным развитием схемы ЯЗ РДС–37: этот заряд характеризовался отношением L/D = 1,5 при абсолютном уровне энерговыделения, близком к РДС–37.


Следующий шаг в разработке ЯЗ этого класса был сделан в ядерных испытаниях 23 февраля и 24 октября 1958 г. В этом случае отношение L/D = 2,2–2.

По сравнению с рассмотренной выше разработкой при близком (и несколько большем) значении E/G была существенно повышена удельная характеристика E/V0 (в 2,1–2,4 раза). Эта разработка явилась стартом для развёртывания широкого фронта работ по созданию и испытанию различных конкретных ЯЗ аналогичного типа.

Следует отметить, что аналогичная деятельность проводилась примерно в это же время и в США. В серии испытаний 1956 года (Eri-Dacota) в США был разработан термоядерный заряд мегатонного класса (Е = 1,1 Мт) с отношением L/D = 2,9 и параметрами E/G = 1,15–1,3 Мт/т, E/V0 = 3,7 Мт/м 3. По сравнению с удельными характеристиками зарядов предыдущего поколения (Cherokee) при существенно меньшей абсолютной мощности (в 3,5 раза) была сохранена удельная мощность E/G, была в 2 раза увеличена удельная мощность E/V0 и существенно уменьшено отношение L/D (с 3,9 до 2,9).

Очевидно, что радикальное изменение конструкции ЯЗ потребовало развития системы проектирования ЯЗ и её калибровки в проводившихся ядерных испытаниях.
Сверхмощные термоядерные заряды и ядерные испытания

Одним из характерных направлений развития термоядерного оружия в рассматриваемое время было создание мощных термоядерных зарядов и совершенствование их удельных показателей.

Наиболее мощным ядерным испытанием США было испытание Bravo 28 февраля 1954 г. с энерговыделением Е = 15 Мт.

Через четыре года в испытании Oak был испытан мощный термоядерный заряд с удельным энерговыделением, в 2,3 раза превышающим характеристики устройства Bravo.

Характерным примером параметров сверхмощных ядерных зарядов СССР является результат, полученный в опыте 27 сентября 1962 г., с абсолютным энерговыделением более 10 Мт. По сравнению с параметрами устройств в экспериментах 23 февраля и 24 октября 1958 г. параметр Е/М возрос в 3,5–4 раза, а параметр E/V возрос в 3–3,3 раза.

Рекордные характеристики по абсолютному энерговыделению были достигнуты в опыте СССР 30 октября 1961 г. с мощностью взрыва Е = 50 Мт, в котором проверялся в неполномасштабном испытании ЯЗ с номинальным энерговыделением Е = 100 Мт. Эксперимент подтвердил номинальные характеристики заряда.


Реализация подобных высоких характеристик стала возможной в результате накопленного опыта и совершенствования системы проектирования ЯЗ.

При разработке данного ЯЗ отмечалось, что его успешное испытание откроет путь к созданию ядерного оружия практически неограниченной мощности. По-видимому, в 1961 году эта возможность представлялась актуальной для системы ядерных вооружений СССР. В то же время следует отметить, что рассматриваемый сверхмощный заряд ни в номинальном варианте (Е = 100 Мт), ни в испытательном (Е = 50 Мт) — никогда не входил в ядерный боезапас СССР. Соответственно и это направление работ не получило дальнейшего развития. Ядерная программа СССР пошла по другому пути.

Отметим также, что проведение ядерного испытания 30 октября 1961 г. с энерговыделением Е = 50 Мт, в котором было радикально сокращено значимое экологическое воздействие взрыва, явилось крупным достижением технологии ядерных испытаний СССР, созданной к тому времени.

Разработка сверхмощных термоядерных зарядов рассматривалась как важная задача для обоих ядерных институтов СССР. Рассмотренные выше разработки ядерных зарядов, испытанных 30 октября 1961 г. и 27 сентября 1962 г., проводились во ВНИИЭФ (Арзамас-16).

В качестве примеров разработок сверхмощных зарядов, проводившихся ВНИИТФ (Челябинск-70), можно привести устройства, испытанные 25 сентября и 24 декабря 1962 г. В первом случае проводилось испытание заряда, близкого по характеристикам к заряду ВНИИЭФ, испытанному 27 сентября 1962 г. Сравнение показывает, что это были, по существу, дублирующие разработки.

В эксперименте 24 декабря 1962 г. проводилось испытание сверхмощного заряда с номинальным энерговыделением около 50 Мт в условиях неполномасштабного взрыва с примерно в два раза сниженной мощностью. Испытание подтвердило ожидаемые характеристики заряда. Отметим, что в испытательном варианте, представляющем собой заряд повышенной чистоты, собственно ядерное энерговыделение было невелико.

Характерным видом работ при разработке термоядерных зарядов большой мощности для США было создание ЯЗ повышенной чистоты, в которых вклад ядерного энерговыделения в полную мощность взрыва существенно снижался.


Первое испытание в этих же целях было проведено в СССР 20 октября 1958 г. на полигоне на Новой Земле в модификации ранее испытанного „грязного“ двухстадийного заряда. Уровень ядерного энерговыделения, достигнутый в разработке, составил незначительную часть полной энергии, однако при этом полное энерговыделение существенно уменьшилось по сравнению с базовым зарядом.

К данным разработкам примыкает рассмотренный выше заряд, испытанный 30 октября 1961 г., с энерговыделением Е = 50 Мт, в котором доля собственно ядерного энерговыделения была невелика.

При рассмотрении вопросов, связанных с практическим значением использования зарядов повышенной чистоты для военных целей, важное значение имели результаты атмосферных испытаний, которые характеризовали радиационную обстановку в районе эпицентра взрыва и на следе радиоактивного облака в зависимости от высоты (приведённой высоты) взрыва.

При анализе вопросов определения возможного уменьшения активности взрывов исследовалось влияние наведённой активности, связанной с нейтронной активацией элементов конструкции термоядерного боеприпаса.

Определённое различие в подходах разработчиков двух стран было обусловлено тем, что полный мегатоннаж ядерного арсенала СССР в то время был далёк от того уровня, когда он мог представлять глобальную угрозу для среды обитания в случае широкомасштабного ядерного конфликта. Работы США в этом направлении, по-видимому, были связаны с поисками удовлетворительного решения данной проблемы, которая была актуальна в связи с большой величиной мегатоннажа ядерного арсенала США.
Интегральный мегатоннаж боеприпасов и проблема глобального радиоактивного загрязнения среды обитания

Ядерные испытания позволили существенно развить представления о составе и количестве радионуклидов, нарабатываемых в ядерных и термоядерных взрывах, характере переноса и выпадения радиоактивности в различных зонах, прилегающих к району взрыва, и глобальном радиоактивном загрязнении среды обитания. Приведём ряд оценок глобального радиоактивного загрязнения, к которому могло бы привести использование ядерного арсенала США (общий мегатоннах приблизительно 20 000 Мт) того времени в масштабной ядерной войне.

Удельная наработка активности продуктов деления 238U к характерному моменту t ≈ 30 суток, который может определять начало глобального выпадения активности, произведённой рассматриваемыми взрывами, составляет C0 = 2,3×10 5 Ки/кт (по делению), а совокупная наработка активности продуктов деления к этому времени может быть оценена в CΣ = 2,3×10 12 Ки. При равномерном распределении этой активности по поверхности земного шара её плотность составит q = 4,5×10 3 Ки/км 2. Интенсивность γ-дозы, создаваемой этой активностью, может быть оценена на уровне Dγ = 0,85 Р/сутки (Δt = 30 суток), а интегральная поглощённая доза за всё время после выпадения активности может составить Dγ = 15–40 Р (в зависимости от времени выпадения активности на данной территории (но не ранее 30 суток после производства взрывов) и от скорости заглубления активности в грунт).

Глобальное радиоактивное загрязнение среды обитания связано также с наработкой активности плутония, трития и радиоуглерода 14С.

Код
Исходя из удельной наработки активности плутония в термоядерных зарядах (в основном 239Pu и 240Pu) в C0 = 10 3 Ки/Мт, получим оценку возможной интегральной наработки активности плутония при подрыве ЯЗ ядерного арсенала США в CΣ = 2×10 7 Ки. При равномерном распределении этой активности по поверхности земного шара её плотность может быть оценена в q(Pu) = 4×10–2 Ки/км 2.

При уровне удельной наработки остаточного трития в термоядерных зарядах m = 0,5–1 кг/Мт интегральная наработка трития в рассматриваемом случае может быть оценена на уровне mΣ = 9–17,5 т с совокупной активностью CΣ(T) = (0,9–1,75)10 11 Ки. Эта величина превышает в 50–100 раз равновесное естественное содержание трития в гидросфере.

Исходя из величины удельной наработки нейтронов при взрыве термоядерных зарядов в n = 2×10 26 нейтронов/Мт, в предположении их полного захвата азотом атмосферы, получим оценку возможной наработки радиоуглерода 14C в рассматриваемом случае на уровне m0 = 83 т с совокупной активностью CΣ(14C) = 3,7×10 8 Ки. Для сравнения отметим, что эта величина приблизительно в 100 раз превышает естественное содержание радиоуглерода в атмосфере и находится на уровне естественного содержания 14C в гидросфере.

Снижение остроты проблемы глобального радиоактивного загрязнения было связано в дальнейшем не с увеличением роли в ядерном арсенале зарядов повышенной чистоты, а с уменьшением совокупного мегатоннажа ядерного арсенала при увеличении общего количества ЯЗ, т. е. с существенным уменьшением типичной мощности ЯЗ, стоящих на вооружении.

Для СССР также характерен этот путь, хотя по сравнению с развитием ядерного арсенала США он проходил в другой отрезок времени.
Некоторые особенности натурной отработки ядерных зарядов в период проведения атмосферных испытаний

В рассматриваемый период времени (1949–1962 гг.) был заложен фундамент системы проектирования ядерного оружия, определены основные принципы его создания и развития. Это было сделано в СССР в условиях эффективного развития физических моделей процессов, происходящих в ядерных и термоядерных зарядах, при специфически ограниченных возможностях вычислительной техники и при широком экспериментальном исследовании работы различных образцов ЯЗ в натурных испытаниях.

При разработке ядерных зарядов, первичных модулей двухстадийных термоядерных зарядов можно выделить такие основные направления развития, которые сохранились на долгие годы, как:
Код
миниатюризация ядерных зарядов;
повышение их живучести в условиях, создаваемых потенциальными средствами противодействия;
эффективность использования делящихся материалов;
обеспечение необходимой надёжности номинальных характеристик.



Существенное значение играло обеспечение необходимых конструкционных характеристик, связанных с работоспособностью ЯЗ в различных эксплуатационных условиях.

На этой стадии работ были осознаны проблемы, связанные с обеспечением ядерной взрывобезопасности (ЯВБ) ядерных зарядов в условиях случайных аварийных ситуаций, приводящих к детонации взрывчатых веществ из одной точки подрыва. Первый специальный эксперимент в СССР в этих целях был проведён 26 августа 1957 г.

Уже в 1954 году было осознано, что неядерный взрыв ядерного заряда сопровождается диспергированием плутония, входящего в его состав, с последующим его выпадением. Первый эксперимент, в котором были получены практические результаты в этом плане, состоялся 19 октября 1954 г., когда произошёл непредвиденный отказ ядерного заряда.

В это время получил распространение подход к конструированию двухстадийных зарядов, когда один и тот же первичный модуль использовался в различных термоядерных зарядах, что позволило существенно повысить эффективность и надёжность ядерных испытаний и разработок ядерных зарядов. Эти подходы получили своё развитие в последующие годы.

Разработка двухстадийных термоядерных зарядов предполагала следующие основные направления их совершенствования:
Код
повышение удельного энерговыделения (E/G, E/V0 );
уменьшение определяющего диаметра ядерного заряда;
обеспечение устойчивого режима работы вторичного модуля;
адаптацию к конкретным средствам доставки.


Здесь также существенное значение имело обеспечение требуемых характеристик в различных эксплуатационных условиях. Важную роль играли вопросы, связанные с поражающими факторами взрыва термоядерных зарядов.
Исследование ядерной взрывобезопасности ядерного оружия и ядерные испытания
Общие проблемы ядерной взрывобезопасности ядерных зарядов

Один из основных вопросов безопасности ядерного оружия связан с поведением ядерного боеприпаса в условиях случайного, нецеленаправленного подрыва взрывчатого вещества, входящего в состав боеприпаса. Как правило, многие виды подобных возникающих ситуаций могут моделироваться работой боеприпаса при подрыве ВВ в одной точке („одноточечная безопасность“). При этом рассматриваются два круга вопросов:
гарантии отсутствия ядерного взрыва (собственно „ядерная взрывобезопасность“ ЯЗ);
последствия аварийного взрывного нагружения блока активных материалов и их диспергирования с последующим рассеянием в окружающей среде (радиационная взрывобезопасность).


Аварийная ядерная взрывобезопасность для каждого ЯЗ характеризуется вероятностным распределением, определяющим, с какой вероятностью при одноточечном подрыве ВВ ядерное энерговыделение взрыва превысит соответствующий уровень.

Эта величина в существенной степени определяется двумя характеристиками: параметрами источника нейтронов в среде делящихся материалов и параметрами надкритичности блока делящихся материалов при его аварийном взрывном нагружении.

Качественно понятно, что в отсутствие источника нейтронов надкритичная система будет пребывать в потенциально взрывном состоянии, но не взорвётся, поскольку отсутствует возможность инициирования процесса цепной реакции (при этом необходимо помнить, что естественный нейтронный источник, связанный с природным нейтронным фоном, процессом спонтанного деления радионуклидов и т. д., существует всегда). С другой стороны, действие типичных нейтронных источников на подкритичную систему не приводит к ядерному взрыву.
Особенности ядерных испытаний на ядерную взрывобезопасность

Процесс имплозии в аварийном режиме существенно отличается от условий номинального режима и является, как правило, более сложным. Создание расчётных методов оценок параметров надкритичности заряда в этих условиях требует достаточной степени развития вычислительных средств и накопления результатов, полученных в конкретных экспериментах (ядерных испытаниях). Проведение таких испытаний обладает определённой спецификой.

Значительная часть гарантий ядерной взрывобезопасности многих видов ЯЗ связана с существенными различиями в параметрах нейтронного источника при аварийном подрыве ЯЗ и при боевом применении. В этом случае нейтронное поле при аварийном подрыве сводится к характеристикам естественного нейтронного фона среды и материалов, и вероятность инициирования цепной реакции при достижении блоком делящихся материалов надкритического состояния может быть существенно меньше 1. В то же время при экспериментальном исследовании в ядерном испытании параметров надкритичности, реализуемой в аварийном режиме, необходимо иметь гарантированное обеспечение инициирования цепной реакции (в противном случае опыт будет неинформативен). Этим определяется использование в ядерных испытаниях на одноточечную ядерную безопасность ЯЗ специальных источников нейтронов, которые, как правило, отсутствуют в случайной аварийной ситуации.

Другая группа специфических вопросов связана со средствами диагностики таких экспериментов. Достигаемый уровень ядерной взрывобезопасности для отдельных ЯЗ определяет величину ядерного энерговыделения в таких испытаниях в диапазоне, характерном для гидроядерных опытов, а не для ядерных взрывов. Эта проблема была эффективно решена ещё в период проведения атмосферных ядерных испытаний СССР.

Разработки некоторых видов ЯЗ были связаны с использованием нейтронных источников на основе (α,n)-реакции.

Методологические подходы к редакции подобных экспериментов состояли в том, что:
основой обеспечения ядерной взрывобезопасности ядерного оружия (ЯО) является обеспечение его ядерной взрывобезопасности в условиях аварийных ситуаций, обусловленных случайными факторами и стихийными бедствиями;
представительным способом моделирования поведения ЯЗ в таких условиях является инициирование его ВВ в одной точке с обеспечением тех или иных режимов детонации взрывчатки;
для исследования процесса протекания цепной реакции в эксперименте необходимо использование специальных систем нейтронного инициирования, гарантирующих получение экспериментальной информации;
вероятность инициирования цепной реакции в аварийной ситуации в существенной степени определяется характеристиками нейтронного поля в ЯЗ, соответствующими условиям аварии.

При переходе к проведению подземных ядерных испытаний работы по исследованию вопросов и обеспечению ядерной взрывобезопасности получили дальнейшее развитие. В их рамках изучались как общие методологические аспекты проблемы повышения безопасности ядерного оружия, так и проводились эксперименты по аттестации параметров безопасности конкретных ядерных зарядов.
Сравнение программ полигонных испытаний СССР и США по изучению ядерной взрывобезопасности

Первый эксперимент по исследованию „одноточечной безопасности“ ядерного заряда был проведён в СССР 26 августа 1957 г., а, по существу, программа ядерных испытаний СССР в интересах безопасности начала реализовываться с 1961 года. Всего в период атмосферных испытаний в СССР было проведено 11 экспериментов подобного типа. После перехода на подземные ядерные испытания было проведено ещё 14 специальных ядерных испытаний в этих целях, а также дополнительно 17 экспериментов в составе групповых ядерных взрывов. Таким образом, полное количество ядерных испытаний (индивидуальных и в составе групповых взрывов) в интересах исследования безопасности ЯЗ равно 42. В табл. 1.3 приведено распределение таких ядерных взрывов по времени. Для сравнения здесь же приведено распределение количества ядерных взрывов США, проводившихся в подобных целях, полное число которых превышает количество ядерных взрывов СССР в интересах безопасности в два раза и равно 88. Программа ядерных испытаний США в интересах исследования безопасности ЯЗ была начата на два года раньше, а именно 1 ноября 1955 г.
Таблица 1.3 Распределение количества ядерных взрывов СССР и США в интересах безопасности по годам
Код
Год    1955    1956    1957    1958    1961    1962    1963    1963    1964    1965    1966    1967    1968    1969
СССР    —    —    1    —    4    6    —    —    —    —    —    —    1    1
США    3    1    8    21    —    1    3    1    2    —    4    3    4    7
Год    1970    1971    1972    1973    1974    1975    1976    1977    1978    1979    1980    1981    1982    1983
СССР    1    —    2    1    1    —    1    1    4    3    1    3    —    2
США    5    3    2    1    1    2    —    —    1    —    —    —    —    1
Год    1984    1985    1986    1987    1988    1989    1990    1991    1992    Σ    Σ1    Σ2
СССР    —    2    —    2    4    —    1    —    —    42    11    31
США    —    —    —    1    3    5    2    1    2    88    37    51


Примечания. 1963 год разбит на две части (до и после августа, т. е. до и после вступления в силу Договора о запрещении ядерных испытаний в трёх средах). Σ — полное число ядерных взрывов в интересах безопасности; Σ 1 — полное число ядерных взрывов в интересах безопасности, проведённых до августа 1963 года; Σ 2 — полное число ядерных взрывов в интересах безопасности, проведённых после августа 1963 года.

Отметим, что если до августа 1963 года количество ядерных взрывов США в интересах безопасности превышало аналогичное количество взрывов СССР в 3,36 раза, то в период после августа 1963 года эта разница составляла уже 1,65 раза.

Максимальное количество ядерных взрывов в интересах безопасности СССР провёл в 1962 году (6 взрывов), в то время как США провели в этих целях 21 испытание в 1958 году. В период проведения подземных испытаний максимальное количество ядерных взрывов СССР было проведено в 1978 и 1988 гг. (4 взрыва), в то время как США провели 7 подземных взрывов в 1969 году. Можно отметить также значительную неравномерность в реализации программ ядерных испытаний в интересах безопасности. У СССР был перерыв в этих работах в 1963–1967 гг., у США — в 1976–1986 гг. (за исключением двух опытов 1978 и 1983 гг.). Можно отметить определённый рост испытательных работ в этих целях у обеих стран, начиная с 1987 года.

Представляет интерес сравнить условия проведения ядерных испытаний в интересах безопасности.

В табл. 1.4 приведено распределение количества ядерных взрывов в интересах безопасности по условиям проведения (для полного числа и для числа испытаний до августа 1963 года).
Таблица 1.4 Распределение количества ядерных взрывов в интересах безопасности по условиям их проведения
Код
Период    Страна    Атмосферный    Подземный    Всего
воздушный    наземный    штольня    скважина
1955–1992 гг.    СССР    1    10    31    —    42
США    1    17*    6    64    88
До августа 1963 г.    СССР    1    10    0    0    11
США    1    17*    6    13    37


* Включая один надводный взрыв.

Следует отметить, что если все ядерные взрывы СССР в интересах безопасности до августа 1963 года проводились в атмосфере, то около 50% ядерных взрывов США в этих целях в этот период проводились под землёй. Типичным видом атмосферных испытаний этого типа в обеих странах был наземный взрыв. В условиях подземных испытаний СССР проводил все испытания в интересах безопасности в штольнях, а США (после августа 1963 года) — в скважинах.

Из 42 ядерных взрывов СССР в интересах безопасности 37 взрывов (в том числе все 11 взрывов в период атмосферных испытаний) были проведены на Семипалатинском испытательном полигоне (СИП), а 5 взрывов — на Северном испытательном полигоне „Новая Земля“ (СИПНЗ).

В США из 88 ядерных взрывов в интересах безопасности 86 взрывов было проведено на территории Невадского испытательного полигона, один взрыв — на территории полигона атолла Эниветак, один взрыв — на территории полигона авиабазы Неллис.

В ходе ядерных испытаний по безопасности ЯЗ реализовались различные уровни энерговыделения.

Максимальное ядерное энерговыделение в опытах по безопасности ЯЗ было реализовано в эксперименте 9 сентября 1961 г. Это значение близко к максимальному уровню энерговыделения, реализованному в ядерных испытаниях по безопасности ЯЗ США в период атмосферных испытаний, составляющему 500 тонн тротилового эквивалента.
Развитие направлений исследований ядерной взрывобезопасности

По мере накопления экспериментального материала совершенствовались расчётные методики определения уровней безопасности. В основе методик — решение двумерных „холодных“ уравнений газодинамики с расчётами нейтронных характеристик. Расчётные методики с удовлетворительной точностью описывают характеристики нейтронных полей ядерных зарядов при подрыве ВВ в них в определённой точке, определённой зоне. С помощью этих методик, наряду с прямым полигонным экспериментом, тестируется ЯВБ ядерных зарядов, поступающих в серийное изготовление.

Большой объём экспериментальных работ был выполнен по исследованию более сложных случаев возникновения детонации ВВ. Сюда относятся работы по уточнению моделей детонации ВВ, в том числе развития детонации в условиях аварийного „околопорогового“ воздействия, множественного воздействия в условиях осколочных полей, сенсибилизации и десенсибилизации ВВ в условиях рассинхронизированных множественных воздействий.

Чрезвычайно сложный и обширный комплекс вопросов возникает в случае групповой ЯВБ (ГЯВБ) — при аварийном взрыве ВВ одного из зарядов, находящихся в группе зарядов. При взрыве ВВ соседних зарядов, тем более при выделении ядерной энергии в одном из зарядов, возникает групповой эффект цепочки взорвавшихся зарядов, при котором возможно заметное увеличение выделившейся ядерной энергии по сравнению с независимым аварийным срабатыванием нескольких зарядов. Проведён обширный комплекс лабораторных опытов с макетами зарядов по исследованию проблемы ГЯВБ.

В реальной аварийной ситуации первый ЯЗ взрывается в одной точке. В натурном эксперименте при одноточечном подрыве ВВ первого заряда гарантируется возбуждение в нём при переходе через критичность цепной реакции и ядерное энерговыделение на уровне, соответствующем его Λ = ∫λdt в подобных условиях сжатия. При квазисинхронном одноточечном взрыве следующего заряда возбуждение цепной реакции в нём обеспечивается нейтронами, наработанными при взрыве первого заряда, и такое инициирование может приводить во втором ЯЗ к большему количеству делений по сравнению с первым и т. д.

Вопросы ядерной и групповой взрывобезопасности исследовались применительно к условиям транспортировки, хранения и эксплуатации ядерных боеприпасов (ЯБП) с соответствующим расчётным моделированием и проведением экспериментов на внутренних испытательных площадках ядерных центров Минатома России и полигонах Минобороны.
Исследования по диспергированию делящихся материалов

В 1960, 1961, 1963 гг. на территории Семипалатинского испытательного полигона МО СССР была реализована программа гидроядерных экспериментов. В этих экспериментах одновременно проводилось изучение выпадения α-активности радионуклидов на поверхность грунта, определяемой ключевыми ядерными материалами, входящими в состав ЯЗ. Эксперименты проводились для макетов ЯЗ на основе плутония и на основе 235U. В табл. 1.5 приведено распределение количества гидроядерных экспериментов.

Таблица 1.5 Распределение количества гидроядерных экспериментов
Код
Тип    1960 г.    1961 г.    1962 г.    Всего
На основе Pu    6    5    13    24
На основе 235U    6    8    0    14



Эксперименты проводились в условиях различных редакций наземного взрыва. В экспериментах на основе плутония было диспергировано около 750 Ки активности в различных погодных условиях. Направление ветра менялось практически от 0 до 360°, а средняя скорость ветра варьировалась от 2 до 15 м/с.

Следует отметить, что результаты прямых измерений α-активности на оси следа облака имеют для отдельных экспериментов достаточно сложный и разнообразный характер. Вместе с тем на основе большой совокупности опытов может быть получено эмпирическое эффективное среднее распределение выпадения активности. На основании опытных данных были получены также количества активности, выпавшей на заданном расстоянии от центра взрыва в направлении, перпендикулярном оси следа. Закон выпадения активности в этом направлении аппроксимировался распределением Гаусса.

Результаты этих измерений представляют прямой интерес для оценок средних характеристик радиационной аварии ядерного боеприпаса с диспергированием плутония в условиях отсутствия ядерного взрыва. На их основе могут быть сделаны также некоторые заключения о возможных вариациях уровня выпадения активности по сравнению с характеристиками типичной средней аварии.

В период атмосферных ядерных испытаний в 1961–1962 гг. на территории Семипалатинского испытательного полигона был проведён также ряд наземных ядерных испытаний с небольшим ядерным энерговыделением (уровень от нескольких тонн до нескольких сот тонн). В некоторых из этих опытов непосредственно после взрыва проводились измерения величины интенсивности γ-дозы, по которой могут быть восстановлены характеристики распределения выпадения активности продуктов деления. В предположении отсутствия фракционирования выпадения активности плутония и активности продуктов деления данные этих измерений также могут служить эмпирической основой для прогнозирования характерных последствий радиационных аварий с ядерными боеприпасами.
Некоторые особенности программы ядерных взрывов в мирных целях СССР

Одним из важных элементов Договора о нераспространении ЯО является Статья V, регламентирующая основы деятельности по использованию ядерных взрывов в мирных целях в интересах всего человечества, без дискриминации неядерных государств. Ядерные взрывы, в том числе ядерные взрывы в мирных целях, явились мощным инструментом в развитии уникальных технологий, возможности которых далеко не исчерпаны. В материалах договора обсуждаются возможности, которые может дать цивилизации развитие ядерных технологий в мирных целях, совместимость этой деятельности с интересом нераспространения ЯО и гарантиями неиспользования этих работ для военных целей. Актуальность этой проблемы связана с бессрочным продлением в 1995 году Договора о нераспространении ЯО без изменения текста Договора и заключением Договора о всеобъемлющем запрещении ядерных испытаний (Договор о ВЗЯИ) в 1996 году.
Ядерные взрывы в мирных целях

Ядерные взрывы в мирных целях проводились в рамках масштабной программы работ в интересах решения различных хозяйственных задач. Международное признание значения возможностей использования ядерных взрывов в мирных целях зафиксировано в тексте Договора 1968 года о нераспространении ядерного оружия, где подчёркивается, что добровольный отказ государств от создания и приобретения ядерного оружия не должен препятствовать их доступу к использованию возможностей ядерных взрывов в мирных целях.

К настоящему времени отношение Международного сообщества к ядерным взрывам в мирных целях существенно изменилось. Для этого имеется ряд причин.

Во-первых, в практике международного сотрудничества не было случаев применения мирных ядерных взрывов в интересах неядерных государств в соответствии с возможностями, предоставляемыми Договором о нераспространении.

Во-вторых, отработка технологии проведения отдельных ядерных взрывов, в том числе мирных, была связана иногда с частичным выходом радиоактивных веществ в окружающую среду, что, с одной стороны, требовало улучшения технологии, а с другой — содействовало созданию атмосферы неприятия общественностью ядерных взрывов вообще и мирных ядерных взрывов (МЯВ), в частности.

В-третьих, программа США по ядерным взрывам в мирных целях оказалась достаточно скромной по своему объёму (27 МЯВ, или приблизительно 2,6% общего числа ядерных испытаний) и по своим результатам, что привело к её свёртыванию в 1973 году. СССР проводил более масштабную программу подобных работ (124 МЯВ, 17,3% общего числа ядерных испытаний) и продолжал её вплоть до 1988 года.

Эти факторы определили стремление зафиксировать в Договоре о ВЗЯИ запрет и на проведение ядерных взрывов в мирных целях. Дополнительным аргументом сторонников такого подхода является, по их мнению, сложность контроля за установлением факта исключительно мирного характера ядерного взрыва и предоставление гарантий, что он не имеет никакого отношения к ядерным оружейным программам.

Таким образом, риск скрытого использования мирных ядерных взрывов в интересах военных программ, недостаточность гарантий экологической безопасности, с одной стороны, и отсутствие масштабных технологий мирных взрывов, представляющих важное значение для всей цивилизации, с другой — являются основными аргументами для сторонников запрета мирных ядерных взрывов в рамках Договора о ВЗЯИ.
Основные направления развития технологий ядерных взрывов в мирных целях, проведённых в СССР

Программа ядерных взрывов в мирных целях, проводившаяся СССР, была направлена на решение различных конкретных задач. К ним относятся:
глубинное сейсмозондирование земной коры (ГСЗ) с целью поиска геологических структур, перспективных для разведки полезных ископаемых;
Код
работы по интенсификации добычи нефти;
работы по интенсификации добычи газа;
работы по созданию подземных ёмкостей в массивах каменной соли;
опытно-промышленные работы по созданию подземных ёмкостей;
работы по созданию воронок выброса, траншей канального профиля и перемещению грунта;
работы по перекрытию скважин газовых фонтанов;
работы по дроблению руды;
работы по предупреждению выбросов угольной пыли и метана;
работы по исследованию захоронения в глубокие геологические формации опасных промышленных стоков нефтехимии.



В качестве примера отметим, что в рамках комплексной программы Министерства геологии и АН СССР по изучению геологического строения земной коры в период с 1971 по 1988 год было проведено 39 подземных ядерных взрывов на 14 профилях ГСЗ суммарной протяжённостью 70 тысяч километров. Кроме того, выполнено два профиля ГСЗ с попутным использованием ядерных взрывов (ЯВ), проведённых для других целей.

Применение ГСЗ подтвердило существование 10 газовых и газоконденсатных месторождений на 15 разведочных площадях в Енисей-Хатангской впадине и ещё около 10 на разбуриваемых площадях Вилюйской синеклизы.

Почти в течение 20 лет эксплуатируются в качестве хранилищ газоконденсата два резервуара на Оренбургском месторождении, позволившие предотвратить безвозвратные потери свыше 2 миллионов тонн ценного углеводородного сырья.

К этому комплексу вопросов примыкают также исследования, которые проводились с целью использования энергии ядерных взрывов для проведения вскрышных работ для упрощения задачи добычи полезных ископаемых, залегающих на относительно небольших глубинах.

На стыке решения хозяйственных задач и фундаментальных исследований в мирных ядерных взрывах лежали исследования вопросов наработки в ядерных взрывах трансурановых элементов, в том числе плутония, для его последующего использования в качестве топлива в ядерной энергетике. Составной частью этих работ было проведение повторных экспериментов в подземных полостях соляных массивов с целью изучения возможностей локализации продуктов взрыва и их дальнейшего извлечения.

Важным элементом развития технологии ядерных взрывов в мирных целях, проводившихся в СССР, были исследования, направленные на уменьшение возможных побочных эффектов взрывов и обеспечение экологической безопасности.
Новые направления ядерных взрывных технологий в мирных целях

Хотя многие виды мирных ядерных взрывов показали свою высокую эффективность, в частности реализация программы глубинного сейсмического зондирования территории СССР, очевидно, что в перспективе ядерные взрывы в мирных целях должны быть направлены в основном на решение новых актуальных проблем, стоящих перед РФ и многими государствами современного мира.

К таким проблемам, имеющим общечеловеческое значение, для решения которых могут быть использованы мирные ядерные взрывные технологии (ЯВТ), относятся:
ликвидация высокоактивных отходов ядерной энергетики и ядерных силовых установок;
ликвидация химического оружия и особо опасных химических токсичных материалов и отходов;
ликвидация излишков делящихся материалов, компонентов ЯЗ и ЯБП.

В рамках этих направлений ядерные взрывные технологии будут направлены на решение фундаментальных экологических проблем цивилизации и могут использоваться для ликвидации различных видов оружия массового поражения. Разработка новых видов мирных ядерных технологий проводится в Российском федеральном ядерном центре (г. Арзамас-16) с 1989 года.

Применительно к проблеме ликвидации высокоактивных отходов (ВАО) ядерной энергетики можно рассчитывать, что использование одного мирного ядерного взрыва мощностью до 100 кт позволит ежегодно перерабатывать весь объём отработавшего ядерного топлива (ОЯТ) АЭС России, не подлежащего заводской переработке. Энергия ядерного взрыва позволит разбавить высокоактивные отходы в огромной массе производимого взрывом расплава (приблизительно 100 тысяч тонн), остекловать в нём активность существенно сниженной концентрации и захоронить на больших глубинах в химически инертном состоянии, вдали от районов жизнедеятельности человека.

Стоимость одного подобного технологического взрыва оценивается на уровне 30–50 миллионов долларов.

Подобная технология может использоваться также для ликвидации высокоактивных отходов радиохимической переработки ОЯТ, не подлежащих хозяйственному использованию, дефектных тепловыделяющих сборок (ТВС). Аналогичные возможности существуют и в отношении ОЯТ, и других типов высокоактивных отходов ядерных силовых установок, в том числе ядерных реакторов подводных лодок и ледокольного флота.

Экологическая безопасность ЯВТ основана на созданной в РФ экологически безопасной технологии проведения подземных ядерных испытаний, которые, по существу, представляют собой подобные захоронения активности, наработанной в процессе взрывов, разбавленной и остеклованной в расплаве горных пород. При этом, безусловно, должен быть правильно выбран горный массив, обеспечены необходимые гидрогеологические условия и соблюдение всех правил технологии. Важным моментом было бы использование в этих целях специально отторгнутой островной или полуостровной территории.

Применительно к проблеме уничтожения химического оружия можно рассчитывать, что для ликвидации всего объёма химического оружия СССР без его разборки (300–400 тысяч тонн брутто-массы, включая около 40 тысяч тонн отравляющих веществ) потребуется до 30 технологических взрывов мощностью до 150 кт, которые могут быть проведены в течение 10 лет. В случае предварительного выделения отравляющих веществ (ОВ) из боеприпасов затраты на уничтожение уменьшатся в 5 раз, а срок работ составит 2–3 года.

Стоимость полной программы может быть оценена в 400–600 миллионов долларов, что в 30–15 раз меньше стоимости альтернативных заводских программ. В процессе технологического взрыва на первой стадии производится нагрев ОВ ударной волной, на второй стадии энергией, оставшейся в полости взрыва, разложение ОВ на безвредные компоненты с последующим остекловыванием их твёрдой фазы в расплаве горных пород и захоронением на больших глубинах.

Обеспечение экологической радиационной безопасности таких взрывов аналогично обеспечению в технологии проведения безопасных подземных ядерных испытаний. Дополнительные возможности могут быть связаны с использованием взрывных технологических устройств повышенной чистоты. Химическая экологическая безопасность достигается проведением предварительных исследований поведения химических материалов в лабораторных установках, подтверждающих необходимую степень разложения, возможностями внесения специальных технологических добавок, сдвигающих химическое равновесие, а также правильным выбором геологических условий.

Ядерная взрывная технология может использоваться для ликвидации делящихся материалов, представляющих опасность для создания ядерного оружия, в том числе энергетического плутония. Эта технология рассматривалась (в том числе) для решения задачи ликвидации ядерного оружия третьих стран в сжатые сроки. Достаточно одного технологического взрыва мощностью 100 кт для ликвидации 50 т плутония в составе специальных контейнеров, который будет разбавлен и остеклован в 100 тысячах тонн расплава породы и захоронен на большой глубине. Экспериментальные средства международного мониторинга на поверхности в районе захоронения гарантируют невозможность извлечения породы с плутонием для её переработки.
Ядерные взрывы в мирных целях и фундаментальные исследования

Ядерные взрывы в мирных целях могут использоваться и для решения вопросов фундаментальной науки.

Среди подобных проблем отметим исследования, связанные с решением проблемы управляемого термоядерного синтеза, изучением свойств веществ в области сверхвысоких сжатий и температур, в сверхсильных магнитных полях.

Фундаментальные взрывные эксперименты позволяют исследовать поведение дейтерий-тритиевой и дейтериевой плазмы в уникальных физических условиях, создаваемых различными способами. Эти исследования могут энергично способствовать в сжатые сроки достижению правильного понимания различных аспектов процессов, важных для работ в области термоядерного синтеза и создания термоядерных энергетических установок. На стадии проведения ядерных испытаний была создана достаточно совершенная система диагностики, необходимая для таких работ.

Стоимость одного подобного эксперимента оценивается в сумму, не превышающую 10 миллионов долларов. Срок подготовки и проведения такого опыта составит 2–3 года.

Экологическая безопасность работ будет гарантирована созданной технологией проведения безопасных ядерных испытаний. Дополнительные возможности могут быть связаны с использованием в этих работах взрывных технологических устройств повышенной чистоты.

Важную проблему представляют поиски возможностей использования энергии ядерного взрыва для противодействия угрозе падения на Землю крупных естественных космических объектов.

Фундаментальные взрывные эксперименты позволят исследовать различные аспекты поведения среды, имитирующей отдельные фрагменты астероида, в условиях их нагружения различными видами и уровнями воздействий, создаваемых ядерным взрывом. Эти исследования могут позволить уточнить облик и очертания проблемы, существующие и перспективные возможности предполагаемых средств защиты от астероидов. На стадии проведения ядерных испытаний была создана достаточно совершенная система диагностики, необходимая для выполнения подобных работ.

Стоимость одного такого эксперимента оценивается в 10–20 миллионов долларов.

Экологическая безопасность таких работ будет гарантирована созданной технологией проведения безопасных ядерных испытаний.

Отметим, что проведение ядерных взрывных экспериментов для фундаментальных исследований также целесообразно осуществлять на специальной территории, отторгнутой для производства данных работ.
Ядерные испытания и ядерные институты

В нашей стране, как и в США, существует два института, занимающихся разработкой ядерных зарядов. На протяжении истории развития ядерного оружия СССР их наименования неоднократно менялись, и сейчас они известны под названиями ВНИИ экспериментальной физики (ВНИИЭФ) и ВНИИ технической физики (ВНИИТФ), которые мы и будем далее использовать. ВНИИЭФ участвовал в ядерных испытаниях с 1949 по 1990 год, ВНИИТФ — с 1957 по 1989 год. Представляет интерес оценка участия обоих институтов в проведении ядерных испытаний СССР.

В качестве количественного критерия сравнительной роли ядерных институтов будем использовать распределение количества ядерных испытаний по принадлежности к тому или другому ядерному институту, в том числе за определённый промежуток времени, а также в соответствующем диапазоне энерговыделения взрыва. Конечно, значимость ядерных испытаний может сильно варьировать от одного взрыва к другому, но в целом в программе ядерных испытаний было много действительно важных, фундаментальных экспериментов, так же как было много и рядовых опытов, решавших достаточно конкретные задачи. Поэтому можно рассчитывать, что используемый простой критерий — число проведённых опытов из обширной выборки будет достаточно хорошо характеризовать относительные усилия ядерных институтов.

При этом необходимо учитывать, что в период до 1963 года ряд ядерных испытаний СССР, по существу, не определялся действиями ВНИИЭФ или ВНИИТФ, а относился к сфере действия МО СССР. Это, прежде всего, такие виды ядерных испытаний, как надводные, подводные, высотные взрывы и испытания при ракетных пусках. Хотя в этих экспериментах использовались ядерные заряды разработки ВНИИЭФ или ВНИИТФ, эти эксперименты были нами выделены в отдельную группу по принадлежности — принадлежности к МО. Это не означает, конечно, что в других ядерных испытаниях роль МО была невелика, во многих случаях она была сравнима или не менее важна, чем роль соответствующего ядерного института (для ряда испытаний до 1963 года ниже мы отмечаем это обстоятельство). Тем не менее, поскольку мы рассматриваем здесь вопрос, прежде всего, об испытаниях собственно ядерных зарядов, в этих и других случаях принадлежность испытания определяется принадлежностью к ядерному институту.

В период после 1963 года заметную долю в общем объёме ядерных испытаний СССР занимали промышленные взрывы. Как в разработке промышленных зарядов, так и в проведении ряда промышленных взрывов оба ядерных института СССР играли активную роль. Такие ядерные испытания включены нами в список по принадлежности к ВНИИЭФ или ВНИИТФ. Вместе с тем в ряде промышленных взрывов роль ядерных институтов СССР была минимальной, а проведение этих опытов определялось и осуществлялось другими организациями. Эти эксперименты выделены нами в отдельный список и не отнесены к деятельности ВНИИЭФ или ВНИИТФ.

Следует отметить, что ряд ядерных испытаний после 1963 года проводился совместно ВНИИЭФ и ВНИИТФ. В этом случае независимо от конкретного вклада каждого института и сложности самого испытания мы вводили „вес“ 0,5, т. е. принимали, что в таком эксперименте каждым институтом проводилась половина испытания. В соответствии с этим число некоторых видов ядерных испытаний, проведённых институтами, стало дробным.

За период с 1949 по 1990 г. в СССР было проведено 715 ядерных испытаний.

В период 1949–1963 гг. доля ВНИИЭФ в количестве ядерных испытаний была существенно выше и составляла приблизительно 68% по сравнению с 32% ВНИИТФ. Это обстоятельство определялось сравнительно поздним началом участия ВНИИТФ в проведении ядерных испытаний (10.04.57 г.). При этом для энергетического диапазона ΔE > 150 кт соотношение числа испытаний ВНИИЭФ — ВНИИТФ составляло 59–41%, а для энергетического диапазона ΔE < 150 кт оно составляло 72,5–27,5%. Это соотношение говорит о структурном различии программ ядерных испытаний ВНИИЭФ и ВНИИТФ в тот период.


В 1964–1976 гг. доля ядерных испытаний ВНИИЭФ составила 46% по сравнению с 54% ВНИИТФ. Доля ядерных испытаний с E < 150 кт составила при этом для ВНИИЭФ 44,5%, для ВНИИТФ — 55,5%; в диапазоне E > 150 кт соотношение долей ВНИИЭФ–ВНИИТФ составило 61,5–38,5%. Можно констатировать, что переход к подземным ядерным испытаниям изменил количественное распределение ядерных испытаний в пользу ВНИИТФ, однако ВНИИЭФ по-прежнему имел большую квоту на проведение мощных ядерных испытаний.

В период 1964–1989 гг. в СССР было проведено 156 ядерных испытаний в интересах мирных ядерных взрывов, в том числе 124 промышленных взрыва и 32 испытания по отработке промышленных зарядов.

Из этого количества экспериментов, в проведении которых была значительной (а иногда и определяющей) роль других организаций, ВНИИЭФ имел отношение к проведению 62 взрывов, а ВНИИТФ — к проведению 94 взрывов, хотя подчеркнём ещё раз условность этого деления.
Ядерные испытания и исследования поражающих факторов ядерных взрывов
Общие характеристики поражающих факторов ядерных взрывов

Создание ядерного оружия и специфика физических процессов, протекающих при ядерном (термоядерном) взрыве, определили особый характер поражающих факторов, сопровождающих его применение. Этот особый характер обусловлен качественно более высокой концентрацией энергии взрыва по сравнению с традиционными видами оружия (до 10 6 раз на единицу массы), существенно более высокой скоростью взрывного процесса (до 10 3–10 4 раз), наличием проникающего излучения взрыва (в том числе гамма- и нейтронного излучений, сопровождающих взрыв), наработкой значительного количества высокоактивных, достаточно долгоживущих радионуклидов, выпадение которых может определять большие зоны территории со значительным радиационным фоном.

Высокая массовая и объёмная концентрация энергии взрыва при малых временах её выделения определяет соотношение распределения энергии взрыва между кинетической и внутренней энергией продуктов взрыва боеприпаса, с одной стороны, и энергией первичного излучения, выходящего из боеприпаса, — с другой. При взаимодействии этих видов энергии с атмосферой, окружающей заряд, в ней формируется зона, прогретая до температуры в несколько тысяч градусов, „огненный шар“, излучающий заметную долю энергии взрыва в диапазоне спектральной прозрачности атмосферы, „тепловое“ излучение которого является одним из основных поражающих факторов ядерного взрыва в атмосфере (воздушный, наземный, надводный взрывы). Одной из основных характеристик теплового излучения является распределение потока этой энергии на различных расстояниях, а также параметры его длительности.

Резкий перепад концентрации энергии, созданный взрывом, в слоях атмосферы, окружающих заряд, определяет перенос значительной части энергии взрыва в атмосфере в виде воздушной ударной волны. Важной характеристикой этого вида ПФЯВ является распределение максимального избыточного давления на фронте ударной волны на различных расстояниях от центра взрыва, а также импульса давления, создаваемого взрывом. Взаимодействие ударной волны с поверхностью грунта (воды) приводит к изменению её характеристик вдоль земной поверхности.

С другой стороны, взаимодействие энергии взрыва, в том числе воздушной ударной волны, с грунтом или водой приводит к формированию ударной волны, распространяющейся в грунте или воде, создающей сейсмическое воздействие. Важными характеристиками этого вида ПФЯВ являются как избыточное давление на фронте ударной волны, так и создаваемое смещение элементов нагруженной среды.

В условиях подземного (подводного) взрыва перенос энергии осуществляется ударной волной, которая может воздействовать на заглублённые, подводные объекты или объекты, находящиеся на поверхности.

В верхних слоях атмосферы часть энергии первичного излучения ядерного взрыва может переноситься на значительные расстояния. К характеристикам этого вида ПФЯВ относится распределение потока энергии излучения на различных расстояниях, его спектральное распределение и параметры длительности.

Процесс деления ядер сопровождается наработкой избыточных нейтронов, которые в процессе взрыва выходят за пределы боеприпаса и распространяются в окружающих слоях атмосферы. Наработка избыточных нейтронов идёт и при горении термоядерного горючего. Этот вид ПФЯВ характеризуется распределением потока и энергии нейтронов в зависимости от расстояния до центра взрыва.

Процесс деления ядер и взаимодействие нейтронов взрыва с некоторыми материалами приводят к наработке гамма-излучения, сопровождающего взрыв боеприпаса. Этот вид ПФЯВ характеризуется распределением потока энергии гамма-квантов в зависимости от расстояния до центра взрыва, а также параметрами длительности. При взаимодействии гамма-излучения взрыва с атмосферой возникает ток комптоновских электронов, который может приводить к формированию электромагнитного импульса ядерного взрыва.

При наземном ядерном взрыве или ядерном взрыве с небольшим заглублением происходит образование воронки выброса грунта, в сильной степени деформирующей поверхность в районе эпицентра. Такой взрыв сопровождается выбросом в атмосферу значительных масс грунта, в основном выпадающих обратно в районе эпицентра взрыва и частично переносимых (лёгкие фракции) атмосферными потоками до своего осаждения на значительных расстояниях от эпицентра. Фракции выброшенного взрывом грунта содержат радионуклиды, наработанные в ядерном взрыве (в частности, продукты деления ядер), и определяют при своём выпадении радиоактивное загрязнение местности. Облако, содержащее продукты взрыва, представляет собой зону повышенной радиации в атмосфере. Такое облако формируется и при воздушном ядерном взрыве.

При надводном (подводном) взрыве происходит выброс значительных масс воды с её последующим обрушением и формирование различных видов волн, распространяющихся вдоль поверхности. Такой взрыв также сопровождается образованием радиоактивного облака с последующим выпадением радионуклидов.
Военно-технические возможности ядерных арсеналов и поражающие факторы

При большом разнообразии поражающих факторов ядерного взрыва разнообразно и его воздействие на различные объекты военного и гражданского назначений, военную технику, человека, элементы среды обитания.

Следует иметь в виду, что ядерное оружие рассматривалось как оружие двойного назначения:
оружие, направленное на поражение группировок и средств обеспечения вооружённых сил противника (в том числе как оружие поля боя, оружие противодействия и т. д.);
оружие поражения военно-экономического потенциала (ВЭП).


В первом случае речь идёт об оружии, предназначенном для решения конкретных военно-тактических задач, а во втором — об оружии массового поражения, направленном на уничтожение систем жизнеобеспечения противостоящего государства (в рамках доктрины сдерживания — это гарантии ответного удара с неприемлемым для противника ущербом).

Естественно, что приоритет тех или иных задач определял выделение соответствующих поражающих факторов ядерного оружия как основных видов воздействия и требовал соответствующей оптимизации возможностей ядерного арсенала. Поскольку удельный вес указанных двух основных функций ядерного оружия изменялся со временем, то изменялась и относительная оценка роли тех или иных поражающих факторов и представлений о необходимой структуре ядерного арсенала.

Так, например, военное применение США ядерного оружия в 1945 году в Японии явилось демонстрацией оружия устрашения, способного в беспрецедентной для того времени степени разрушать крупные центры структуры государства.

В 1953 году ядерный потенциал США насчитывал 1169 боезарядов с совокупным мегатоннажем E0 = 73 Мт и, по существу, не мог определять исход возможного крупномасштабного столкновения между СССР и США. Однако в 1957 году США уже обладали ядерным потенциалом устрашения в 5543 боезаряда с совокупным мегатоннажем E0 = 17500 Мт. Этот потенциал был достаточен для создания на территории СССР сплошной зоны разрушений общей площадью S0 = 1,5 млн. кв. километров и сплошной зоны пожаров общей площадью S0 ≥ 2 млн. кв. километров. Площадь радиоактивного загрязнения с уровнем внешнего облучения > 3×10 2 рад спустя сутки после взрыва могла существенно превысить 10 млн. кв. километров, а практически это означало, что территория СССР могла превратиться в радиоактивную пустыню.

Ядерный арсенал СССР в это время был на несколько порядков меньше и не представлял реального оружия устрашения для США как по своему объёму, так и по возможностям средств доставки, а мог решать только конкретные задачи на театре военных действий или в отношении поражения ключевых объектов союзников США. Важной задачей для СССР тогда было уточнение возможных последствий массированного ядерного удара США по территории СССР, что требовало проведения конкретных исследований в ядерных испытаниях.

В это же время возникла задача по изучению возможностей, предоставляемых ядерным оружием в средствах противодействия, т. е. исследования в интересах ядерной ПВО (позднее ядерной ПРО), противокорабельных и противолодочных систем и т. д.

Очевидно, что это качественно иные задачи, чем поражение ВЭП государства, и здесь определяющую роль могут играть иные поражающие факторы.
Воздействие поражающих факторов ядерного взрыва

Исследования характеристик поражающих факторов ядерного взрыва и их воздействий на различные объекты начались в ядерных испытаниях СССР с первого ядерного взрыва 1949 года. Уже в этом испытании исследовалось воздействие ударной волны и теплового излучения ядерного взрыва на различные образцы военной техники и гражданских сооружений, а также характеристики радиоактивного загрязнения территории как в районе, прилегающем к эпицентру взрыва, так и на значительных расстояниях (сотни километров) вдоль траектории движения радиоактивного облака взрыва. Эти исследования были продолжены в двух последующих испытаниях в 1951 году (наземный и воздушный взрывы), а также в мощном наземном взрыве 12 августа 1953 г. Уже в ходе испытаний 1949 и 1951 гг. был сделан фундаментальный вывод о радикальном уменьшении радиоактивного загрязнения территории как в эпицентре взрыва, так и на следе радиоактивного облака, при переходе от наземных ядерных взрывов к воздушным. Эти эксперименты заложили фундамент представлений о характеристиках воздействия ПФЯВ.

Работы были продолжены в 1954–1955 гг. В 1955 году в двух экспериментах 6 и 22 ноября 1955 г. впервые изучалось воздействие мощных воздушных взрывов на различные военные и гражданские объекты. В экспериментах исследовалось также воздействие ПФЯВ на большое количество подопытных животных. Масштабный характер имели работы, связанные с исследованием радиационного состояния территории и атмосферы.

В ядерных испытаниях этого периода исследовалось воздействие ядерного взрыва на траншеи и укрытия различного типа, блиндажи и огневые позиции разных видов, танки, артиллерийские орудия и установки, самолёты. В некоторых испытаниях исследовалось воздействие ядерного взрыва на элементы боевого оснащения и оборудования кораблей ВМФ. Это было связано с отсутствием возможности проведения таких работ в натурных условиях (полигон на архипелаге Новая Земля ещё не был создан), и исследования проводились на суше в ядерных испытаниях на Семипалатинском полигоне.

Среди исследуемых гражданских объектов можно выделить здания промышленного типа, склады и хранилища, линии электропередач, мосты, железнодорожные пути, нефтяные вышки, элементы заводских сооружений. Широко исследовалось воздействие ядерных взрывов на жилые дома различных видов, типичных для условий СССР, и убежища для населения.
Войсковые учения и ядерные испытания


Следует отметить, что результаты исследования воздействия ядерного взрыва привели к выводу о возможности эффективных действий вооружённых сил на поле боя в условиях применения противником ядерного оружия. В этом контексте следует рассматривать и войсковые учения, проводившиеся на Тоцком полигоне МО СССР 14 сентября 1954 г., в ходе которых был произведён воздушный ядерный взрыв мощностью 40 кт. Взрыв был произведён на высоте, обеспечивающей незначительное радиоактивное загрязнение территории в эпицентре взрыва и на следе радиоактивного облака. В учениях принимало участие около 45 тысяч военнослужащих. Это были единственные масштабные войсковые учения в условиях реального ядерного взрыва.

В то же время следует отметить, что подготовка и проведение атмосферных ядерных взрывов, в которых участвовали сотни специалистов ядерных полигонов и других войсковых частей, конечно, также являлись практической подготовкой военнослужащих к действиям в условиях военного ядерного конфликта. В этой связи следует особо подчеркнуть значительный практический опыт, полученный экипажами тяжёлых бомбардировщиков, принимавшими участие в воздушных ядерных испытаниях при сбрасывании ядерного взрывного устройства в составе авиабомбы. При этом диапазон энерговыделения производимых взрывов менялся от килотонны до десятков мегатонн. В приобретении такого практического опыта ВВС СССР, по-видимому, существенно опередили ВВС США.

Другим примером практической подготовки экипажей самолётов ВВС в условиях, моделирующих военные действия, можно рассматривать многократные полёты самолётов радиационной разведки вдоль движения радиоактивного облака (в том числе и внутри облака), созданного при проведении ядерных испытаний.

Отметим, что масштабные войсковые учения в ходе ядерных испытаний проводились в период атмосферных испытаний и Соединёнными Штатами. Так, в ходе двух ядерных испытаний 1946 года на атолле Бикини (операция Crossroads) с мощностью взрыва 23 кт каждый участвовало 42 тысячи военнослужащих. Один взрыв являлся воздушным взрывом на небольшой приведённой высоте (H = 5,6 м/кт 1/3), а второй — подводным взрывом на небольшой приведённой глубине (h ≈ 1 м/кт 1/3).

В течение 1951–1957 гг. на Невадском полигоне во время ядерных испытаний было проведено 8 этапов войсковых учений Desert Rock с участием в общей сложности не менее 55 тысяч военнослужащих.

Одним из известных примеров действий самолётов ВВС США по исследованию радиационной обстановки в облаках взрывов, созданных ядерными испытаниями, могут служить полёты, проводившиеся в 1956 году в ходе испытаний операции Redwing.
Специализированные ядерные испытания в интересах исследования ПФЯВ до 1963 года

В первых ядерных испытаниях задачи исследования ПФЯВ, их воздействия на различные объекты и задачи совершенствования ядерных боеприпасов, изучения процессов их работы, как правило, совмещались в одном и том же эксперименте. Впоследствии ряд ядерных испытаний стал проводиться специально в интересах исследования ПФЯВ и их воздействия. В период до 1963 года в СССР было проведено 17 подобных испытаний.

Первым таким экспериментом является опыт, проведённый 21 сентября 1955 г., представлявший собой первый подводный взрыв СССР, которым были открыты ядерные испытания на Северном испытательном полигоне. К этой категории ядерных испытаний относятся также два других подводных ядерных взрыва и один надводный взрыв, проведённые на полигоне острова Новая Земля.

Другой комплекс работ по исследованию ПФЯВ был проведён в серии ядерных испытаний, проведённых в ракетных пусках с полигона Капустин Яр. Первый такой взрыв был произведён 19 января 1957 г., а всего эта программа насчитывала 10 взрывов.

В 1962 году в связи с предстоящим прекращением атмосферных ядерных испытаний на Семипалатинском полигоне было проведено первое подземное испытание в интересах исследования ПФЯВ. В ходе подготовки этого эксперимента и при его реализации была создана качественно новая технология исследований ПФЯВ, которая получила эффективное развитие после 1963 года.

На искусственность рассматриваемого деления проблематики испытаний мы указывали выше. По-видимому, с большим основанием в группу ядерных испытаний СССР в интересах исследования ПФЯВ могут быть также зачислены 2 испытания 1957 и 1958 гг., в которых был проведён большой объём исследовательских работ (оба испытания проведены на полигоне на Новой Земле и относятся по основной классификации к фундаментальным и методическим исследованиям). То же относится и к двум испытаниям 1962 года, представляющим собой ракетные пуски системы „земля-воздух“ (оба испытания проведены на Семипалатинском полигоне и относятся по основной классификации к совершенствованию ядерного оружия).

В проведении экспериментов по исследованию ПФЯВ принимали участие различные организации из МО, МАЭ (МСМ) и других министерств, поэтому выделить основную принадлежность экспериментов к какому-либо отдельному ведомству непросто, и такое выделение всегда будет носить условный характер. Одним из вариантов классификации по принадлежности 21 ядерного испытания СССР по исследованию ПФЯВ является следующий: 16 экспериментов в основном проводилось организациями МО, 2 эксперимента — ВНИИЭФ, 3 эксперимента — ВНИИТФ.
Специализированные ядерные испытания в интересах исследования ПФЯВ после 1963 года

Введение в действие Договора о запрещении ядерных испытаний в трёх средах резко ограничило возможности исследований ПФЯВ и их воздействий на различные объекты. Становилось практически невозможным проведение опытов по исследованию воздействия ПФЯВ на крупномасштабные военные и промышленные объекты различных типов, гражданские сооружения, которые были одним из основных объектов исследований до 1963 года. Вместе с тем проведение подземных ядерных испытаний сохранило возможность исследования первичных поражающих факторов ядерного взрыва и некоторых видов их воздействия на отдельные объекты, которые могли быть размещены в рамках технологических приёмов подземных взрывных опытов.

В период после 1963 года в СССР было проведено 34 подземных ядерных испытания в интересах исследования ПФЯВ и их воздействия на различные объекты. Первый эксперимент в этих целях в новый период был проведён 15 марта 1964 г. Этим опытом была начата программа ядерных испытаний СССР после вступления в действие Договора о запрещении ядерных испытаний в трёх средах. Из рассматриваемых экспериментов подавляющее большинство проводилось в штольнях.

В США после вступления в действие Договора о запрещении ядерных испытаний в трёх средах было проведено 62 подземных испытания в интересах исследования ПФЯВ, в том числе 46 испытаний в штольнях и 16 испытаний в скважинах. Подавляющее большинство этих работ было проведено МО США.
Заключение

Ядерные заряды представляют собой сложные наукоёмкие устройства, при работе которых происходят уникальные физические процессы. Характер и результаты этих процессов в существенной степени зависят от конкретных технических особенностей конструкции данного типа ЯЗ, а также ряда других факторов, связанных, например, с внешними воздействиями на ЯЗ, ЯБП, старением материалов и т. д. При разработке ЯЗ и определении его технических характеристик используются:
Код
возможности физико-математического моделирования;
возможности лабораторной, экспериментальной и инженерной базы ВНИИЭФ и ВНИИТФ;
возможности натурных ядерных испытаний.

При этом значение ядерных испытаний определялось недостаточной полнотой возможностей двух первых технологических компонентов для гарантированной аттестации характеристик разрабатываемых типов ЯЗ на требуемом, весьма высоком уровне. Требуемый уровень надёжности ЯЗ составляет > 0,997, в то время как средний уровень надёжности реализации ожидаемых характеристик при разработке новых типов зарядов может быть оценен по данным совокупности ядерных испытаний приблизительно в 0,7–0,8. По результатам натурных испытаний в схемы ЯЗ, проявивших себя в экспериментах неудовлетворительно, вносились изменения, и модернизированные ЯЗ затем вновь испытывались для получения требуемых характеристик.

С течением времени совершенствовались возможности всех трёх технологических компонентов разработки ЯЗ.

Информация, полученная в результате ядерных испытаний, явилась важной основой для совершенствования базы физико-математического моделирования и подходов, используемых в лабораторных исследованиях.

Сейчас мы могли бы гарантировать на 100 процентов реализацию требуемых характеристик во многих ЯЗ, которые создавались на первых этапах реализации ядерной программы, без ядерных испытаний, опираясь только на результаты физико-математического моделирования и лабораторной отработки.

Проблема, однако, состоит в том, что с течением времени росли также и требования к техническим характеристикам ЯЗ, что усложняло режимы их работы и требовало дополнительных возможностей базы двух первых технологических компонентов. Поэтому необходимость ядерных испытаний сохранялась до тех пор, пока речь шла о необходимости создания новых ЯЗ с повышенными техническими характеристиками.

Как отмечалось выше, ядерные испытания имели большое значение для выяснения разнообразных возможностей воздействия поражающих факторов ядерного взрыва, повышения живучести ядерного оружия, различных видов военной техники, инженерных сооружений.

В условиях отсутствия ядерных испытаний мы можем производить модернизацию разработанных ЯЗ, не затрагивающую принципиальных условий, определяющих течение физических процессов при работе зарядов, и тем самым поддерживать ядерный арсенал. Мы можем проводить разработку новых типов ЯЗ, изучая вопросы возможностей новых технологических прорывов в ЯО, и решать вопросы производства перспективных систем, существенных для выполнения задач нашей обороны. Однако практической постановки новых типов ЯЗ на вооружение в ближайшей перспективе не будет, хотя и здесь возможны некоторые исключения.

За период 1949–1990 гг. СССР провёл 715 испытаний ядерного оружия и ядерных взрывов в мирных целях. В этих экспериментах было взорвано 969 ядерных устройств, так как ряд ядерных испытаний имел характер групповых взрывов. Для сравнения отметим, что США провели 1056 испытаний ядерного оружия и ядерных взрывов в мирных целях с подрывом 1151 ядерного устройства.

При этом СССР провёл 221 ядерное испытание в период воздушных ядерных испытаний (до августа 1963 года) и 494 подземных ядерных испытания в 1964–1990 гг. В последние годы (в период 1980–1990 гг.) Советский Союз проводил в среднем около 20 ядерных испытаний в год (исключая периоды мораториев на испытания) и не уступал по этим показателям США.

Основная часть ядерных испытаний была проведена на Семипалатинском испытательном полигоне (456 испытаний, в том числе 338 подземных испытаний после 1964 года) и Северном испытательном полигоне „Новая Земля“ (130 испытаний, в том числе 39 подземных испытаний после 1964 года).

В состав ядерных испытаний входят 124 ядерных взрыва в мирных целях, из которых 117 взрывов было проведено за пределами ядерных полигонов (в том числе 80 — на территории России). Программа ядерных взрывов в мирных целях предусматривала различные виды технологических работ, от проведения глубинного сейсмозондирования в интересах поиска полезных ископаемых до тушения грандиозных пожаров нефтяных и газовых факелов.

В 1996 году всеобщее прекращение ядерных испытаний было закреплено в рамках международного Договора о всеобъемлющем запрещении ядерных испытаний (Договор о ВЗЯИ).

Мы понимаем политическую неизбежность такого соглашения и в течение последних лет работаем, по существу, в условиях, идентичных тем, которые определены действием Договора о ВЗЯИ. Практика показала, что хотя запрещение ядерных испытаний существенным образом затрудняет решение вопросов жизнеобеспечения ядерного арсенала России, тем не менее, мы будем в состоянии сохранить необходимый потенциал ЯО и в условиях ДВЗЯИ. При этом нам будет нужно постепенно модернизировать технологический цикл ЯО, укрепить вычислительную, экспериментальную и производственную базу отрасли.

Соединённые Штаты Америки в условиях действия ДВЗЯИ планируют поддерживать Невадский ядерный полигон с тем, чтобы в случае необходимости они могли бы возобновить ядерные испытания. В этих целях производится оборудование специальных горных выработок, проводятся тренировочные работы и эксперименты, не связанные с реализацией ядерного взрыва. По-видимому, мы должны занять аналогичную позицию в отношении состояния и деятельности нашего полигона на архипелаге Новая Земля.

Книга «Ядерные испытания СССР. Том 1.»


--------------------
Перейти в начало страницы
 
+Цитировать сообщение
Bartolomew m...
сообщение 10.7.2009, 23:59
Сообщение #2


Иконка группы
ВСУ
Звание: Полковник
Сообщений: 916
Пиастры: 1056632
Инвентарь
Регистрация: 9.9.2007
Страна:
Боевой опыт:   0  


1. Краткая характеристика поражающих факторов ядерного оружия и их воздействие на людей и объекты

Ядерным называется оружие, поражающее действие которого обусловлено энергией, выделяющейся при ядерных реакциях деления и синтеза. Оно является самым мощным видом оружия массового поражения. Ядерное оружие предназначено для массового поражения людей, уничтожения или разрушения административных и промышленных центров, различных объектов, сооружений и техники.

Поражающее действие ядерного взрыва зависит от мощности боеприпаса, вида взрыва, типа ядерного заряда. Мощность ядерного боеприпаса характеризуется тротиловым эквивалентом. Единица ее измерения - т, кт, Мт.

Рассмотрим поражающие факторы наземного ядерного взрыва и их воздействие на человека, промышленные объекты и т.д.

Поражающими факторами наземного ядерного взрыва являются:
Код
воздушная ударная волна (50%);
световое излучение (35%);
проникающая радиация (4%);
радиоактивное заражение (10%);
электромагнитный импульс (1%).



Дадим краткую характеристику поражающих факторов ЯВ.

1.1. Воздушная ударная волна - это зона сжатого воздуха, распростра-няющаяся от центра взрыва. Ее источник - высокое давление и температура в точке взрыва. Основные параметры ударной волны, определяющие ее пора-жающее действие:
избыточное давление во фронте ударной волны, ΔРф, Па (кгс/см2);
скоростной напор, ΔРск, Па (кгс/см2).


Скоростной напор ΔРск - это динамическая нагрузка, создаваемая потоком воздуха, движущимся за фронтом ударной волны. Метательное дей-ствие скоростного напора воздуха заметно сказывается в зоне с избыточным давлением более 50 кПа, где скорость перемещения воздуха более 100 м/с. При давлениях менее 50 кПа влияние ΔРск быстро падает.
время действия ударной волны (с) (при q=20 кт - = 0,6 с, при q=1 Мт - = 3 с).

При воздействии на людей ударная волна вызывает различные по сте-пени тяжести поражения (травмы):
прямые - от избыточного давления и скоростного напора;
косвенные - от ударов обломками ограждающих конструкций, осколков стекла и т.д.


По степени тяжести поражения людей от ударной волны делятся:
Код
на легкие при ΔРф = 20-40 кПа (0,2-0,4 кгс/см2), (вывихи, ушибы);
средние при ΔРф = 40-60 кПа (0,4-0,6 кгс/см2), (контузии, кровь из носа и ушей);
тяжелые при ΔРф ≥ 60 кПа (тяжелые контузии, повреждения слуха и внутренних органов, потеря сознания, переломы);
смертельные при ΔРф ≥ 100 кПа.



Характер разрушений промышленных зданий в зависимости от на-грузки, создаваемой ударной волной:
Код
полные разрушения при ΔРф ≥ 50 кПа (разрушение всех эле-ментов конструкции зданий);
сильные разрушения при ΔРф ≥ 30-50 кПа (обрушение 50% конструкций зданий);
средние разрушения при ΔРф = 20-30 кПа (трещины в несущих элементах конструкций, обрушение отдельных участков стен);
слабые разрушения при ΔРф ≥ 10-20 кПа (повреждения окон, дверей, легких перегородок).



1.2.Световое излучение. Под световым излучением ядерного взрыва понимается электромагнитное излучение, включающее в себя ультрафиолетовую, видимую и инфракрасную области спектра.

Световое излучение ЯВ поражает людей, воздействует на здания, сооружения, технику и леса, вызывая пожары.

Основным параметром, характеризующим поражающее действие светового излучения, является световой импульс (Uсв). При воздействии на людей световое излучение вызывает ожоги тела.

Uсв - это количество световой энергии, падающей на 1 м2 площади, пер-пендикулярной к направлению излучения за все время свечения огненного шара. Единица измерения Uсв - Дж/м2; 1 кал/см2 = 40 кДж/м2. Величина Uсв зависит от интенсивности и продолжительности излучения. Продолжительность в свою очередь зависит от мощности боеприпаса:
Код
при q = 20 кт - 3 с;
q = 1 Мт - 10 с; q = 10 Мт - 23 с.
На величину Uсв также влияют вид взрыва и прозрачность атмосферы. При = 80-160 кДж/м2 (покраснение, припухлость кожных покровов); воздействии на людей световое излучение вызывает ожоги тела:
1 степени при Uсв
2 степени при Uсв = 160-400 кДж/м2 (образование пузырей);
3 степени при Uсв = 400-600 кДж/м2 (омертвление кожи и мышечных тканей);
4 степени при Uсв ≥ 600 кДж/м2 (обугливание кожи, тканей, воз-можна как временная, так и полная потеря зрения и т.д.).


Большую опасность для людей в очаге ядерного поражения представ-ляют пожары. В Хиросиме и Нагасаки ожоги от пожаров составили 70ч80%. 6 августа 1945 г. в Хиросиме огневой шторм продолжался 6 ч, сгорело около 60 тысяч домов, высота пламени достигала 7 км, скорость ветра в зоне огневого шторма - VВ = 50ч60 км/ч.

Распределение пожаров в зонах разрушений ОП:
в зоне полных разрушений (ΔРф ≥ 50 кПа) - наблюдается тление в за-валах;
в зонах сильных и средних разрушений (ΔРф = 50-20 кПа) - сплошные пожары, горит ≈ 90% зданий;
в зоне слабых разрушений (ΔРф = 20-10 кПа) - отдельные пожары, горит одно или несколько зданий.



При тепловом воздействии на материалы световое излучение вызывает их воспламенение, обугливание и оплавление, что приводит к выходу из строя оборудования и технических средств.

1.3. Проникающая радиация - это поток γ- и нейтронных излучений в окружающую среду из зоны ЯВ в течение первых 15-20 с после взрыва, радиус 3ч5 км.

γ-излучение составляет основную часть проникающей радиации. Нейтронное (n) излучение имеет место лишь в момент взрыва и после взрыва до 10 с.


В практической дозиметрии основным параметром, характеризующим поражающее действие на людей проникающей радиации, является доза излучения.

Проникающая радиация, распространяясь в среде, ионизирует ее атомы, а при прохождении через живую ткань - атомы и молекулы, входящие в состав клеток. Это приводит к нарушению нормального обмена веществ, изменению характера жизнедеятельности клеток, отдельных органов и систем организма или к генетическим (наследственным) изменениям. В результате такого воздействия возникает лучевая болезнь.

При однократном внешнем общем облучении человека в зависимости от поглощенной дозы излучения (Дп) различают 4 степени лучевой болезни.
Степень лучевой болезни
Дп (рад; Р)
Характер протекания процессов после облучения



1 степень (легкая)
100-200
Скрытый период 3-6 недель, затем слабость, тошнота, повышение температуры, работоспособность сохраняется.

2 степень (средняя)
200-400
2-3 дня тошнота и рвота, затем скрытый период 15-20 суток, выздоровление через 2-3 месяца.

3 степень (тяжелая)
400-600
Скрытый период 5-10 суток, протекает тяжело, выздоровление через 3-6 месяцев.

4 степень (крайне тяжелая)
≥ 600
Наиболее опасна, может привести к смертельному исходу.


1.4.Радиоактивное заражение (РЗ.


На радиоактивно зараженной местности источниками радиоактивного излучения являются: осколки (продукты) деления ядерного взрывчатого вещества, наведенная активность в грунте и других материалах, не разделившаяся часть ядерного заряда. Зоны радиоактивного заражения, выделяемые в очаге ядерного поражения


Параметры характеризующие зоны РЗ
Зона чрезвычайно опасного заражения, Г
Зона опасного заражения, В
Зона сильного заражения, Б
Зона умеренного заражения, А

Код
Д ∞, (Р)    
4000    
1200    
400    
40

Р1, (Р/ч)    
800    
240    
80    
8

Р10, (Р/ч)    
50    
15    
5    
0,5

Рис.3. Зоны радиоактивного заражения при ядерном взрыве.

Спад уровня радиации при распаде РВ на местности описывается зависимостью:


где Р0, Pt, Р1 - уровни радиации на время t0, t и t0 = 1ч соответственно.

t, t0 - время после ядерного взрыва и в начале измерения.


Из формулы (1) следует, что в результате распада радиоактивных веществ уровни радиации уменьшаются по принципу "7 - 10", т.е. с увеличением времени в 7 раз они уменьшаются в 10 раз, и наиболее интенсив-ный спад уровней наблюдается в первые двое суток.

Радиоактивно зараженная местность может вызвать поражение людей как за счет внешнего γ- излучения от осколков деления, так и от попадания радиоактивных продуктов α,β - излучения на кожные покровы и внутрь организма человека.

Допустимые дозы внешнего облучения людей для военного времени:
однократное облучение (до 4-х суток) 50 Р;
в течение 30 суток 100 Р;
в течение 3-х месяцев 200 Р;
до 1 года 300 Р.



1.5. Электромагнитный импульс (ЭМИ) - это неоднородное электро-магнитное излучение в виде мощного короткого импульса (с длиной волны от 1 до 1000м), которое сопровождает ядерный взрыв и поражает элек-трические, электронные системы и аппаратуру на значительных расстояниях. Источник ЭМИ - это процесс взаимодействия γ-квантов с атомами среды. Поражающим параметром ЭМИ является мгновенное нарастание (и спад) напряженности электрического и магнитного полей под действием мгновенного γ-импульса (несколько миллисекунд). Например, при низком воздушном взрыве N = 1 Мт ЭМИ с поражающими величинами напряженности полей распространяется на площади с радиусом до 32 км, а при N = 10 Мт - до 115 км.

"Приемники" ЭМИ: линии связи и электропередачи, опоры ЛЭП, мачты, антенны, металлические крыши и др. металлические конструкции. В них под действием ЭМИ возникает импульс электрического тока и появляется разность потенциалов относительно Земли. Под действием этих на-пряжений происходит: пробой изоляции, повреждение входных элементов аппаратуры, выжигание элементов электросхем, короткие замыкания, искажения магнитных записей и стирание "памяти" ЭВМ.

При проектировании систем и аппаратуры необходимо разрабатывать защиту от ЭМИ. Защита от ЭМИ достигается экранированием линий энергоснабжения и управления, а также аппаратуры. Все наружные линии должны быть двухпроводными, хорошо изолированными от земли, с малоинерционными разрядниками и плавкими вставками.

Рассматривая проблемы развития ядерного оружия, следует иметь в ви-ду, что США, Россия и другие ядерные государства ведут разработки и создание ядерного оружия третьего поколения, или ядерного оружия на-правленной энергии, в котором значительная часть энергии взрыва перераспределяется и усиливается в пользу одного из поражающих факторов. Например, нейтронное оружие - основной поражающий фактор проникающая радиация с преобладанием нейтронного излучения; тектоническое, или геофизическое оружие - основной поражающий фактор ударная сейсмическая волна; "кобальтовая бомба" - основной поражающий фак-тор радиоактивное заражение местности радиоактивным кобальтом; заряд "Супер ЭМИ" - основной поражающий фактор усиленный электромагнитный импульс; радиологическое оружие - поражающим фактором являются специально приготовленные радиоактивные рецептуры для поражения людей, местности, воздуха, воды, боевой техники и других военных и гражданских объектов и т.п.

К мощным ССП относятся также и такие виды оружия, как бактериологическое, химическое, этническое, лучевое, лазерное, рентгеновское, пучковое или ускорительное, геофизическое и т.п. 120 мегатон! Мощнее небыло.
Прикрепленные файлы
Прикрепленный файл  b1.jpg ( 39,11 килобайт ) Кол-во скачиваний: 1
Прикрепленный файл  ivan.jpg ( 24,5 килобайт ) Кол-во скачиваний: 1
 


--------------------
Перейти в начало страницы
 
+Цитировать сообщение
Amber de Stuff I...
сообщение 11.7.2009, 1:12
Сообщение #3


Иконка группы
ВСУ
Звание: Монарх
Сообщений: 4096
Пиастры: 2147444880
Инвентарь
Регистрация: 20.6.2007
ICQ: 578355207
Страна:
Боевой опыт:   1  


сэр Бартоломью, ну так как-нить разбивай такую кучу текста на несколько постов, выделяй жирным большим шрифтом заголовки, простым жирным подзаголовки, и.т.д а то читать такую кашу нереально.


--------------------
"I've been searching for truth
And I haven't been getting anywhere" © Depeche Mode
Перейти в начало страницы
 
+Цитировать сообщение
VinypooH
сообщение 11.7.2009, 12:03
Сообщение #4


Иконка группы
Сельчанин
Звание: Капер
Сообщений: 32
Пиастры: 313
Инвентарь
Регистрация: 9.7.2009
ICQ: 474458945
Страна:
Боевой опыт:   0  


Цитата
сэр Бартоломью, ну так как-нить разбивай такую кучу текста на несколько постов, выделяй жирным большим шрифтом заголовки, простым жирным подзаголовки, и.т.д а то читать такую кашу нереально.

+1)
но жутко интересно
Перейти в начало страницы
 
+Цитировать сообщение
Amber de Stuff I...
сообщение 11.7.2009, 13:21
Сообщение #5


Иконка группы
ВСУ
Звание: Монарх
Сообщений: 4096
Пиастры: 2147444880
Инвентарь
Регистрация: 20.6.2007
ICQ: 578355207
Страна:
Боевой опыт:   1  


Благодарю вас сэр Бартоломью за редакцию вашего материала :)


--------------------
"I've been searching for truth
And I haven't been getting anywhere" © Depeche Mode
Перейти в начало страницы
 
+Цитировать сообщение

Ответить в данную темуНачать новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 

Текстовая версия Сейчас: 24.1.2018, 12:33
Rambler's Top100